a2 United States Patent

Buzaski et al.

US009448784B2

US 9,448,784 B2
Sep. 20, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)
(65)

(60)

(1)

(52)

REDUCING DOWNTIME DURING
UPGRADES OF INTERRELATED
COMPONENTS IN A DATABASE SYSTEM

Applicant: Oracle International Corporation,
Redwood Shores, CA (US)

George Buzaski, Fremont, CA (US);
Kevin Hudson, San Francisco, CA
(US); Ive Dujmovic, Redwood City,
CA (US); Sandeep Kadiyala, Andhra
Pradesh (IN); Venu Palakurthy,
Andhra Pradesh (IN)

ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 200 days.

13/802,791
Mar. 14, 2013
Prior Publication Data

US 2014/0101646 Al Apr. 10, 2014

Inventors:

Assignee:

Notice:

Appl. No.:
Filed:

Related U.S. Application Data

Provisional application No. 61/707,823, filed on Sep.
28, 2012, provisional application No. 61/707,827,
filed on Sep. 28, 2012, provisional application No.
61/707,840, filed on Sep. 28, 2012.

Int. CL.

GO6F 9/44 (2006.01)

GO6F 7/00 (2006.01)
(Continued)

U.S. CL

CPC . GOGF 8/65 (2013.01); GOGF 8/67 (2013.01);
GOGF 8/68 (2013.01); GOGF 8/71 (2013.01);

GOGF 11/2056 (2013.01); GOGF 11/2058

(2013.01); GOGF 17/30002 (2013.01);

(Continued)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,227,967 A
5,315,709 A

7/1993 Bailey
5/1994 Alston et al.

(Continued)
OTHER PUBLICATIONS

Alan Choi, “Online Application Upgrade Using Edition-Based
Redefinition”, 2009 ACM.*

(Continued)

Primary Examiner — Lewis A Bullock, Jr.

Assistant Examiner — Mark Gooray

(74) Attorney, Agent, or Firm — Vista IP Law Group, LLP;
Peter C. Mei

(57) ABSTRACT

A method, system, and computer program product for reduc-
ing downtime during upgrades of interrelated components in
a computing environment. The method commences while at
least one running software application is executing within
the computing environment by loading a plurality of data-
base objects from an initial run edition into a patch edition.
The database objects comprise at least one software appli-
cation code module, at least one relational database table,
and at least one file system. The method continues by
applying at least one patch to the software application code
module(s) corresponding to the running software
application(s) to create patched software application(s), then
applying patches to the relational database table to create a
patched relational database table, and further applying a
patch to the file system to create a patched file system. When
the subject patches have been applied, the method stops the
running software application(s) and starts the patched soft-
ware application(s).

20 Claims, 12 Drawing Sheets

m—
Nods;LQ23| 01

I
Node 1024

Running
Application 104

Synonyms Patch Edition 120
124 ——— e _———— ———— ————
S S N Sbuiuiu- I St Iy S R S
Vis‘t\fqlzng}. Logical | : Application | : Application | : File | : Business |
, Schema | Gode Module ! | Metadata ; | System | | Data |
Initial Run Edltion 106 e
Synonyms Application Definition 140 Triggers
< o = || =2

124
N < < 3 | f—xA4
Editioning " "
View 126 Logical Application Application File Business
Schema | |Code Module| | Metadata System Data
ug 116 12 e 108

114:

Physical Schema

US 9,448,784 B2

Page 2
(51) Int. CL 2006/0117029 Al 6/2006 Yingst
GoGl’ 17/00 (2006.01) 20060242381 Al 102006 Shatskdh et
atskih et al.
GOGF 9/445 (2006.01) 2007/0038590 Al 2/2007 Vijayan et al.
GO6F 17/30 (2006.01) 2007/0038651 Al 2/2007 Bernstein et al.
GO6F 11/20 (2006.01) 2007/0061487 Al 3/2007 Moore
(52) U.S.CL 2007/0079140 Al 4/2007 Metzger et al.
CPC ... GO6F17/30174 (2013.01); GO6F 17/30374 2007/0106701 AL* 52007 Periyasamy 707200
2007/0156849 Al 7/2007 Becker
(2013.01); GOGF 17/30383 (2013.01); GOGF 2007/0219951 Al 9/2007 Ahmed et al.
17/30424 (2013.01); GO6F 17/30595 2008/0098046 Al 4/2008 Alpern
(2013.01) 2008/0201701 Al 8/2008 Hofhansl et al.
2008/0243966 Al 10/2008 Croisettier
: 2009/0006884 Al 1/2009 Cahill
(56) References Cited 2010/0110474 Al 5/2010 Coulter et al.
2010/0281458 Al 11/2010 Paladino
U.S. PATENT DOCUMENTS 2012/0041988 Al 2/2012 Driesen
00 A s Yool DI A 2 Do
g‘s“s‘ggg i g;}ggg ISAIIImeVehnk 2012/0239707 Al 9/2012 Figus
208903 A /1997 P a“%hnessly 2012/0296883 Al 11/2012 Ganesh
DU, y ralfa etal. 2012/0297030 Al 11/2012 Knobel
3,640,550 A 6/1997 Coker 2013/0104115 Al 4/2013 Bertrand
g’;%’?éé i 1% /}ggg gilwa‘ A 2013/0132936 Al 5/2013 Wang
Al over et al. 2014/0344798 Al 11/2014 Sasaki
6,016,497 A 1/2000 Suver
6,122,630 A 9/2000 Strickler et al. OTHER PUBLICATIONS
6,122,640 A 9/2000 Pereira
6,138,112 A 10/2000 Slutz : : ; : :
6173313 Bl 12001 Klofs ef al. Lassen et al. Experlen.ces with object oriented development in
6,268,850 Bl 7/2001 Ng PL!SQL, Center for Object Technology COT/4-18-V1.4, 2000.
6,304,867 Bl 10/2001 Schmidt Object Cache Navigation, Oracle Call Interface PRogrammer’s
6,314,535 Bl 11/2001 Morris et al. Guide, Release 2 (9.2), Part No. A96584-10, 1996,2002.
6,324,535 Bl 11/2001 Bair et al. Date et al, A Guide to SQL/DS, 1989, Addison-Wesley, Chapter 10.
g’igg’ggz g} 1(3); %88% i/})_r(lim;kanté elt al. Quest Software, Inc., LiveReorg.RTM., “Reorganization for the
4460, idgley et al. . IS
6,480,848 Bl 11/2002 DeKimpe et al. 24.times.7, Database,” 2001. o .
” Paapanen, Eric et al., “Oracle Database Application Developer’s
6,519,613 Bl 2/2003 Friske et al. Guide-L. Obiects”. 10 Rel 1 (10.1). Part No. BLO79601
6,598,059 Bl 7/2003 Vasudevan et al. uide-Large Objects”, 10g Release 1 (10.1), Part No. ;
6,611,848 Bl $/2003 Bradley Apr. 21, 2008, 668 pages. _
6,633,870 Bl 10/2003 Bradley Smith, Jeff, “The Shortest, Fastest, and Easiest way to compare two
6,633,883 B2 10/2003 Koskas tables in SQL Server: Union!”, Jeffs SQL Server Blog 10, Apr. 22,
6,681,225 Bl 1/2004 Uceda-Sosa et al. 2008, 45 pages.
6,745,209 B2 6/2004 Holenstein et al. T-SQL, “sp_rename (T-SQL)”, printed Apr. 22, 2008, 3 pages.
6,769,124 Bl 7/2004 Schoening et al. Scott Ambler et al., “Refactoring Databases: Evolutionary Database
6,801,983 B2 10/2004 Abe et al. Design”, Mar. 3, 2006, 7 pages.
g’ggg%gg g} ﬁ; %88‘5‘ Is)u%h ot al. ¢ al Tom Davidson, Managing Schema Changes (Part 2), MSSQL
,965, ubramaniam et al. .
7,028,057 Bl 4/2006 Vasudevan et al. i/?f:r irso?féilfﬁiﬁ?inc‘ﬁ(ﬁimfé ‘ggggsory Teach, Mar. 31, 2006,
7,080,371 Bl 7/2006 Arnaiz et al. L T '
7.237.238 B2 6/2007 Peppers Non-final Office Action dated May 21, 2015 for U.S. Appl. No.
7,310,653 B2 12/2007 Coyle et al. 13/802,794. _
7,350,191 Bl 3/2008 Kompella et al. Final Office Action dated Jun. 1, 2015 for U.S. Appl. No.
7,421,458 Bl 9/2008 Taylor et al. 13/802,785.
7,574,461 Bl 8/2009 Armorer et al. Final Office Action dated Jul. 8, 2015 for U.S. Appl. No.
7,603,669 B2 10/2009 Curtis et al. 13/802,774.
7,689,587 Bl 3/2010 Tiruveedi et al. Lassen et al. Experiences with object oriented development in PL!
7,693,880 Bl 4/2010 Armorer et al. SQL, Center for Object Technology COT/4-18-V1.4, 2000.
8,087,013 B2 12/2011 Kelly et al. Non-final Office Action dated Mar. 8, 2010 for U.S. Appl. No.
8495612 B2 7/2013 Bertrand 11/875.478.
8,793,230 B2 7/2014 Engelko et al. Advisory Action dated Jan. 26, 2010 for U.S. Appl. No. 11/444,571.
9,043,778 B2 5/2015 Lin et al. : c ; ;
2002/0019972 Al 2/2002 Grier et al. Davidson, Tom, “Managing Schcma_Changes (Part 2),” MSSQL
2002/0087271 Al 7/2002 Rozenshtein et al. Se.rver Developmc.ent Customer Advisory Team, Mar. 31, 2006,
2002/0188600 Al 12/2002 Lindsay et al. Microsoft Cororation. Nov. 19, 2000
2003/0041127 Al 2/2003 Turnbull Ambler, Scott, and Pramod Sadalage. Refactoring Databases: Evo-
2003/0154216 Al 8/2003 Arnold et al. lutionary Database Design. Mar. 3, 2006.
2003/0217069 Al 11/2003 Fagin et al. Final Office Action dated Aug. 30, 2010 for U.S. Appl. No.
2003/0229610 Al 12/2003 Van Treeck 11/875,478.
2004/0002972 Al 1/2004 Pather Notice of Allowance dated Mar. 21, 2011 for U.S. Appl. No.
2004/0064487 Al 4/2004 Nguyen et al. 11/444.571
2005/0015376 Al 1/2005 Fraser et al. C Offe .
2005/0108733 Al 5/2005 Bermudez et al. lff/‘%l(;gi;e Action dated Dec. 7, 2010 for US. Appl. No.
2005/0149475 Al 7/2005 Chkodrov et al. . j) .
2005/0149920 Al 7/2005 Patrizi et al. Final Office Action dated Sep. 8, 2011 for U.S. Appl. No.
2005/0154695 Al 7/2005 Gonzalez et al. 11/801,495. _
2005/0251523 Al 11/2005 Rajamani Non-final Office Action dated Jan. 31, 2012 for U.S. Appl. No.
2006/0015528 Al 1/2006 Hejlsberg et al. 11/875,478.
2006/0085457 Al 4/2006 Gelfand Final Office Action dated Jan. 25, 2012 for U.S. Appl. No.
2006/0085465 Al 4/2006 Nori et al. 11/201,797.

US 9,448,784 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Non-final Office Action dated Jun. 27, 2012 for U.S. Appl. No.

11/875,478.

Final Office Action dated Jan. 29, 2013 for U.S. Appl. No.

11/875,478.

Advisory Action dated Mar. 8, 2013 for U.S. Appl. No. 11/875,478.
Final Office Action dated Mar. 29, 2013 for U.S. Appl. No.

11/801,495.

Notice of Allowance dated Jun. 12, 2013 for U.S. Appl. No.

11/875,478.

Notice of Allowance dated Jan. 16, 2015 for U.S. Appl. No.

13/802,780.

Non-final Office Action dated Nov. 20, 2014 for U.S. Appl. No.

13/802,785.

Non-final Office Action dated Jul. 31, 2014 for U.S. Appl. No.

13/802,794.

Final Office Action dated Jan. 16, 2015 for U.S. Appl. No.

13/802,794.

“Oracle OLAP”, Oracle, Jan. 3, 2012, 2 pages uil:.

“Introduction to Analytic Workspaces”, Oracle OLAP DML Refer-
ence, 11g Release 1 (11.1), Part No. B28126-03, Oracle, Mar. 18,
2013, 2 pages.

Non-final Office Action dated Feb. 12, 2015 for U.S. Appl. No.
13/802,774.

Non-final Office Action dated Mar. 27, 2015 for U.S. Appl. No.
13/802,771.

Notice of Allowance and Fees Due dated Oct. 21, 2015 for related
U.S. Appl. No. 13/802,785.

Final Office Action dated Oct. 23, 2015 for related U.S. Appl. No.
13/802,771.

Notice of Allowance and Fees Due dated Nov. 25, 2015 for related
U.S. Appl. No. 13/802,774.

Notice of Allowance and Fee(s) Due dated Jan. 6, 2016 for related
U.S. Appl. No. 13/802,794, 6 pages.

Non-final Office Action dated May 11, 2016 for related U.S. Appl.
No. 13/802,771.

* cited by examiner

I "OId

US 9,448,784 B2

Sheet 1 of 12

Sep. 20, 2016

BlWoYIS [eoIsAyd

91t

gl

B80T OIL [

eleq wosAg ejepesiy 3|NPO 8poD BWAYIS
ssaulisng all4 uoneoiddy uoileolddy [eaifo 9z MIIA «
Buiuonpg
= |« e ———— N
cel S S &my
s10661) 0%} uonuyaq uonesiddy SWAUOUAS
uoip3g
ssoi) | (| 90T uomp3 uny jenu)
“ eea “ waishs | “ @EpeloW | [OMPOWBPOD | T ewews | - -
ssauIsn 3|l uonedidd uoneor|dd | |eaibo :
i B T B el B ik I fﬂg_s_ﬁ_au
€ZTTTI ZTTIY ZTTIVIETI T I
— - - 1Z4"
¢l uonip3 yoed SWAUOUAS
$01 uoieolddy
Buiuuny
NZOT ®PoN ¥Z0l ©PON

| SPON ¢Z0L 9PON

O
O

10l | ®PON

W3TSAS UoNEaNady

U.S. Patent

001

US 9,448,784 B2

Sheet 2 of 12

Sep. 20, 2016

U.S. Patent

¢ 'Old

oee 8C¢C 9¢c
polad dnues|p / poLad JaAoINgD / poliad Buiuuny /f

(4 N N Y

€ —————— > —————— > (——————————— —— — —— ——— ——— >
| | I | I |
| | I | I |
| I | Adoo payojede || I _ opoo I
Swelao g suoneoydde		19n0IN3	Adoapor uoneoydde
o1losgo	_ooc.oum.o_ _ 101 WelsAs	seyojedeiow	co.;o:._o od
dnowsy Le1soy _ ay] Apeay _ J0 2U0 A	ddy _ oﬁ Ados		
I I I I I I			
	I	I	
" dnues) " 18A0}N) _ azijeuly " Alddy _ aledaud "		
I I I I I I			
/	I /	/ I /	

oLe 802 90¢

1424 /

cle

202 219AD Buiyored suluo

N

00¢

US 9,448,784 B2

Sheet 3 of 12

Sep. 20, 2016

U.S. Patent

€ 9Old
81E
R_Sddv onand
) 7
‘oze adAL -
pouteq WAUOUAS
Josn alland
‘0le et \30¢C 50
3 199(q0 Jasn D 19900 9nanp aeigel o)
0 A x &
3 S]
=] M _‘a _‘% w
o o} O Bwayog) v 109[q0 @
A @ P 5
N S5 o
Q o)
@ ®
N w
B B
||||| _ N (S TV
N B}~ cz¢ wAuouks sddy i ﬂ_)
—~ — —]l
I
2oz 9dAL t——|— = g
pauleq WAUOUAG
el % Q 8]1eAlld
A\ 4 S S
ZpLe T = 1] < -—— == <
0lE | 7BOE 9 | %0 @
3199lg0 Jasn | geler S | geicel 3
A 4 v
Q0% ZZ0¢
O ewayog v 193lq0

U.S. Patent Sep. 20, 2016 Sheet 4 of 12 US 9,448,784 B2

400

N

START

/ 410
Drop PUBLIC synonyms that point at non-
existent objects

v

/ 420
Query PUBLIC synonyms that refer to "to-
be-editioned" objects

v

For the PUBLIC synonyms returned from / 430

the query of step 420, query for users that

have code dependencies on a respective
PUBLIC synonym

v

For each affected user in step 430, create
equivalent private replacement synonym(s)

v

After all private replacement synonyms f 450
have been created, drop all PUBLIC
synonyms from step 420

FIG. 4

U.S. Patent Sep. 20, 2016 Sheet 5 of 12 US 9,448,784 B2

500

N

START

/ 510
Copy the user-defined type from APPS to a
non-editioned type

v

Stop any affected queues

v

/ 530
Update the column type to use the non-
editioned type

v

/ 540
Drop the old type from APPS and create an
APPS synonym to the non-editioned type

v

/ 550
Recreate internal derived object(s) from
affected queue(s)

v

Re-start any affected queues

/ 520

/ 560

END

FIG. 5

US 9,448,784 B2

Sheet 6 of 12

Sep. 20, 2016

U.S. Patent

9 'Old

Z19 319vL 31dNVYS

{(uwnjos uondusap
popeabdn ayj sassasoe Ajuo)

uonIp3 ysed

! ,3n0 PToO
oya sdeey, ‘,x00Q,‘g) seniea
ATEVL TIdNYS O3uT JI9SUI

! ,nIy3z oes 03 buTtyzswos,
! ,MOPUTM,‘Z) sonTEA
FIGYI TTAWYS OJUT JISSul

t,sbeT ¥ yata
butya ¥, ‘,o19qeL,‘T) seniea
TGV TIJHES OFJUT JISSUI

uonipg uny

fad)
sJabb11] uonipg

-sS010

009

US 9,448,784 B2

Sheet 7 of 12

Sep. 20, 2016

U.S. Patent

L'9Old

(08) 2UYHOUVA

NOILdI¥OSHEd

(maiA Buiuonip) 379v1L AN4 2s8a

M3IA uoIP3 Yojed

sJa1oeleyd 08 papuedxe mau ay)
asn ||Im uolIP3 Ydled ayj Ul 9poD -

sJajoeIEYd O¢ se uonduossp
1eaJ} [im UonIP3 uNy 8y) Ui 9poY -

319V.L I1dINVS Y3 Jo uonoaloud
jJualapig v SS9y uonip3 uny pue yajed

» (08) ZUVHOIVA | ZHNOIILATIOSHEA

" 9l.

(0€) TIVHIIVA

NOIILAI¥OSHA

(ma1A Buiuonip3) 319Vl ANA 2s8q@

MaIA uoIIp3 uny

—~ VL.

¢l — 379vL 31dIAVS

002

U.S. Patent Sep. 20, 2016 Sheet 8 of 12 US 9,448,784 B2

800

4

/ 810
Validate free space requirements and grant
edition management permissions

v

Install patch edition database service

v

/ 830
Analyze system for editioning constraint
violations

v

/ 840
Execute automatic fixes for editioning constraint
violations

v

Enable editioning for users

v

/ 860
Install editioning views for developer-managed
tables

v

/ 870
Upgrade seed data tables to editioned data
storage in the patch edition

| - 820

/ 850

END

FIG. 8

U.S. Patent Sep. 20, 2016 Sheet 9 of 12 US 9,448,784 B2

9A00
9A10
A computer processor to execute a set of program code |~
> instructions
I - 9A20
> Program code for preparing a patch edition
I 9A30
9A05 e

—> Program code for applying a patch to patch edition

Program code for finalizing the environment to get the /9A40
> system ready for cutover
I
/9A50
Program code for performing a cutover operation
— comprising patching an edition
9A60

—> Program code fo_r pgrforming a shutdown L~
of application services

9A70

«—> Program code for setting thg patch edition L~

as the new run edition

I. — 9A80

: . Program code for performing a startup of application e

services that refer to the new run edition

I 9A90

Program code for performing cleanup operations of old L~

—

objects or editions

FIG. 9A

U.S. Patent Sep. 20, 2016 Sheet 10 of 12 US 9,448,784 B2

9B00

9B10
A computer processor to execute a set of program code

instructions

Program code for loading, while at least one running 9B20

software application is executing on the system, a plurality
l«—»| Of database objects from an initial run edition into a patch
edition, the database objects comprising at least one
9B05 software application code module, at least one relational
database table, and at least one file system

9B30

Program code for applying at least one patch to the at least

< p| ONE software application code module corresponding to the

at least one running software application to create a
patched software application

9B40

Program code for applying at least one patch to the at least
one relational database table

9B50

Program code for applying at least one patch to the at least
one file system

9B60

Program code for stopping the at least one running

—p .
software application

9B70

«—| Program code for starting the patched software application

FIG. 9B

U.S. Patent Sep. 20, 2016 Sheet 11 of 12 US 9,448,784 B2

9C00

9C10
A computer processor to execute a set of program code

instructions

Program code for loading, while at least one running 9C20
software application is executing within the computing
environment, a plurality of database objects from an initial

> run edition into a patch edition, the database objects

comprising at least one software application code module,

at least one relational database table, and at least one file
system

9C05

9C30

Program code for applying at least one first patch to the at

< > least one software application code module corresponding

to the at least one running software application to create a
patched software application

9C40

Program code for applying at least one second patch to the /
4—| at least one relational database table to create a patched
relational database table

9C50

Program code for stopping the at least one running
software application

9C60

<—»| Program code for starting the patched software application

FIG. 9C

US 9,448,784 B2

Sheet 12 of 12

Sep. 20, 2016

U.S. Patent

FUIT suonedIiunwwioD

0L 'Old

¢c0l)
asegeieq

¢10l
SLlITg|
indu

G0l
¥
moﬂ._om_wc_ Z001 €e0l
SUOIEDIUNWLLOD (s)1osseo01d @oBl)U| Bleq
A A y'y
. 4 : i
9001 sng
7\ Y c
\ 4 : i
010l 6001 8001
saineq obetols Nod Aiowspy uiepy

LLOL
Aeidsig

0001

US 9,448,784 B2

1
REDUCING DOWNTIME DURING
UPGRADES OF INTERRELATED
COMPONENTS IN A DATABASE SYSTEM

RELATED APPLICATIONS

The present application claims the benefit of priority to
U.S. Provisional Patent Application Ser. No. 61/707,823,
entitled “ONLINE PATCHING ORCHESTRATION”, filed
on Sep. 28, 2012, and U.S. Provisional Patent Application
Ser. No. 61/707,827, entitled “CONFIGURATION
CHANGE DETECTION AND PROPAGATION?, filed on
Sep. 28, 2012, and U.S. Provisional Patent Application Ser.
No. 61/707,840, entitled “SYNCHRONIZING DOMAIN
CONFIGURATION PARAMETERS”, filed on Sep. 28,
2012, which are all hereby incorporated by reference in their
entireties; and the present application is related to co-
pending U.S. patent application Ser. No. 13/802,771,
entitled “USING A DATA DICTIONARY TO DETER-
MINE AN UPGRADE EDITION OF A RELATIONAL
DATABASE TABLE?”, filed on even date herewith, which is
hereby incorporated by reference in its entirety; and the
present application is related to co-pending U.S. patent
application Ser. No. 13/802,774, entitled “ONLINE
UPGRADING OF A DATABASE ENVIRONMENT
USING TRANSPARENTLY-PATCHED SEED DATA
TABLES”, filed on even date herewith, which is hereby
incorporated by reference in its entirety; and the present
application is related to co-pending U.S. patent application
Ser. No. 13/802,780, entitled “TRANSPARENTLY
UPGRADING DERIVED DATABASE OBJECTS”, filed
on even date herewith, which is hereby incorporated by
reference in its entirety; and the present application is related
to co-pending U.S. patent application Ser. No. 13/802,785,
entitled “USING CONFIDENCE VALUES FOR SYN-
CHRONIZING FILE SYSTEMS”filed on even date here-
with, which is incorporated by reference in its entirety; and
the present application is related to co-pending U.S. patent
application Ser. No. 13/802,794, entitled “SYNCHRONI-
ZATION OF CONFIGURATION CHANGES BETWEEN
APPLICATIONS AND THEIR PLATFORMS”, filed on
even date herewith, which is hereby incorporated by refer-
ence in its entirety.

Certain aspects in some embodiments of the present
application are related to material disclosed in U.S. patent
application Ser. No. 11/875,478 now U.S. Pat. No. 8,521,
706, entitled “LOW-DOWNTIME AND ZERO-DOWN-
TIME UPGRADES OF DATABASE-CENTRIC APPLICA-
TIONSfiled on Oct. 19, 2007, the content of which is
incorporated by reference in its entirety in this Application.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure, as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

FIELD

The disclosure relates to the field of database system
environments and more particularly to techniques for reduc-
ing downtime during upgrades of interrelated components in
a database system.

10

15

20

25

30

35

40

45

50

55

60

65

2
BACKGROUND

Some embodiments of the present disclosure are directed
to an improved approach for reducing downtime during
upgrades of interrelated components in a database system.

Reducing downtime of computing systems while upgrad-
ing is a goal that has been long sought after. Legacy
approaches have addressed the problem by deploying tech-
niques to upgrade one or another type of data found in an
installation of a computing system, while relying on some
other technique to upgrade other types of data found in the
same installation. For example, legacy techniques have
provided for upgrade of software applications by overwrit-
ing or up-versioning the file containing the application
software code followed by a “restart” (e.g., of the applica-
tion or of the operating system). Other legacy techniques
have implemented approaches to upgrade a file system, most
often by shutting the file system down (e.g., incurring
downtime) during the upgrade. Still other legacy techniques
have addressed the task of upgrading a relational database
by shutting down the relational database for a duration, then
upgrading the database structures and restarting the rela-
tional database. In some environments, legacy techniques
shut down the application servers while keeping the file
system and database servers running in order to accept the
upgrades.

While these legacy techniques have enjoyed varying
usage when applied individually, such legacy techniques do
not address the needed coordination of orchestration of an
installation-wide upgrade of all types of components.
Strictly as examples of the deficiencies of the aforemen-
tioned individual legacy techniques, an upgraded application
might include certain assumptions of an underlying file
system (e.g., either format or content), and those assump-
tions might not become true until a certain time after the
software application as well as the file system have both
been successfully upgraded. Again, strictly as examples of
the deficiencies of the aforementioned individual legacy
techniques, an upgraded application might include certain
assumptions of a relational database system (e.g., either by
definition of relations or content of tables), and those
assumptions might not become true until a certain time after
the software application as well as the relational database
system have both been successfully upgraded.

Further, in modern environments, the corpus of software
application code modules, plus the relational database stor-
age, plus the file system can comprise a storage footprint in
the terabytes or petabytes, which presents a practical con-
straint to the legacy techniques in that the legacy techniques
may incur long downtimes during upgrades.

An improved approach, namely an approach to orches-
trate the upgrades of software applications together with a
file system, together with a relational database is needed.
The present disclosure provides an improved method, sys-
tem, and computer program product for orchestration of
database objects, file systems, and applications during online
patching.

SUMMARY

The present disclosure provides an improved method,
system, and computer program product suited to address the
aforementioned issues with legacy approaches.

Disclosed herein are methods, systems, and computer
program products for reducing downtime during upgrades of
interrelated components in a computing environment. The
method commences while at least one running software

US 9,448,784 B2

3

application is executing within the computing environment
by loading a plurality of database objects from an initial run
edition into a patch edition. The database objects comprise
at least one software application code module, at least one
relational database table, and at least one file system. The
method continues by applying at least one patch to the
software application code module(s) corresponding to the
running software application(s) to create patched software
application(s), then applying patches to the relational data-
base table to create a patched relational database table, and
further applying a patch to the file system to create a patched
file system. When the subject patches have been applied, the
method stops the running software application(s) and starts
the patched software application(s).

Further details of aspects, objectives, and advantages of
the disclosure are described below in the detailed descrip-
tion, drawings, and claims. Both the foregoing general
description of the background and the following detailed
description are exemplary and explanatory, and are not
intended to be limiting as to the scope of the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts an example installation for reducing down-
time during upgrades of interrelated components in a data-
base system, according to some embodiments.

FIG. 2 depicts a cycle to manage edition components for
reducing downtime during upgrades of interrelated compo-
nents in a database system, according to some embodiments.

FIG. 3 depicts selected uses of an edition-based redefi-
nition scheme used in reducing downtime during upgrades
of interrelated components in a database system, according
to some embodiments.

FIG. 4 presents a flow chart of selected edition readiness
operations used in reducing downtime during upgrades of
interrelated components in a database system, according to
some embodiments.

FIG. 5 depicts a flow to manage editioned user-defined
type components for reducing downtime during upgrades of
interrelated components in a database system, according to
some embodiments.

FIG. 6 is a schematic showing the effects of cross-edition
triggers used for reducing downtime during upgrades of
interrelated components in a database system, according to
some embodiments.

FIG. 7 is a schematic showing uses of a database edition-
ing view used in reducing downtime during upgrades of
interrelated components in a database system, according to
some embodiments.

FIG. 8 is a flow chart of an editioning enablement process
as used in reducing downtime during upgrades of interre-
lated components in a database system, according to some
embodiments.

FIG. 9A depicts a block diagram of a system for reducing
downtime during upgrades of interrelated components in a
database system, according to some embodiments.

FIG. 9B depicts a block diagram of a system for reducing
downtime during upgrades of interrelated components in a
database system, according to some embodiments.

FIG. 9C depicts a block diagram of a system for reducing
downtime during upgrades of interrelated components in a
database system, according to some embodiments.

FIG. 10 depicts a block diagram of an instance of a
computer system suitable for implementing an embodiment
of the present disclosure.

DETAILED DESCRIPTION

Some embodiments of the present disclosure are directed
to an improved approach for reducing downtime during

20

25

35

40

45

50

55

65

4

upgrades of interrelated components in a database system.
More particularly, disclosed herein are exemplary environ-
ments, methods, and systems.

Overview

Described herein-below and in the accompanying figures
are scalable methods and apparatus for reducing downtime
during upgrades of interrelated components in a database
system.

As earlier indicated, system downtime or other outage due
to upgrading (e.g., patching) is a major concern in the design
of enterprise-wide infrastructure and mission-critical sys-
tems. System downtime is especially serious for installations
that are configured as a centralized installation, in turn
serving many distributed installations. System outages can
impact all operations, and system outages often incur great
cost when the system outage interferes with customer-
related interactions (e.g., sales, service, payments, etc.) or
another core business activity (e.g., incoming inspection,
manufacturing, etc.). The herein-disclosed techniques for
upgrades of installation-wide infrastructure (e.g., including
patches or upgrades of software (e.g., software applications
and/or software application services, upgrades of file system
format and/or content, upgrade of relational database
objects, etc.) facilitate the trend to deploying fewer enter-
prise-wide sites and fewer installations of mission-critical
systems without adversely impacting business activities that
rely on nearly non-stop uptime of their corresponding com-
puting systems.

The upgrade techniques disclosed herein includes a set of
features known as “Edition-Based Redefinition” (EBR).
Edition-Based Redefinition enables application patches to
be applied with dramatically reduced downtime by execut-
ing database patch actions on a “patch edition” (virtual
copy) of the runtime system. While an online patch is
executing, the production application remains available and
fully functional.

Definitions

Some of the terms used in this description are defined
below for easy reference. The presented terms and their
respective definitions are not rigidly restricted to these
definitions—a term may be further defined by the term’s use
within this disclosure.

“Edition-Based Redefinition” or “EBR” refers to tech-
niques that enable application patches to be applied
with dramatically reduced downtime, for example, by
executing database patch actions on a “patch edition”
(e.g., a wholly or partially virtual copy) of the runtime
system.

“EV” refers to Editioning View. A database view that
maps logical column names to physical column names
per edition.

“FCET” refers to Forward Cross-Edition Trigger. Used to
upgrade table data into new or revised columns.

(NE!->E)” refers to the constraint statement: “Non-Edi-
tioned objects should not depend on Editioned
Objects”. This restriction limits how non-editioned
objects can be defined. Also referred to as the “Edi-
tioning Constraint”.

“UDT” refers to User Defined Type, a developer-defined
composite data type or data structure.

“ADPATCH?” refers to a Patch Execution tool.

“Application Top” refers to a directory tree on the middle-
tier file system containing all files that make up the
application definition, including code (forms, reports,
Java, executables, scripts), configuration, and patching
data.

US 9,448,784 B2

5

“Seed Data” refers to information in database tables that
is used by applications. Seed data is distinct from
business data. As used herein seed data is subject to
patching.

“Seed Data Loader” refers to a patch utility to load Seed
Data updates into a target database.

“Schema Patcher” refers to a patch utility to apply schema
definition changes (tables, views, indexes, sequences,
etc.) to a target database.

Access Policy” refers to logic optionally associated with
a database object that restricts access to data through
that object.

The term “logic” means any combination of software or
hardware that is used to implement all or part of the
embodiments of the present disclosure.

A “module” includes any mix of any portions of computer
memory and any extent of circuitry including hard-
wired logic or circuitry embodied as a processor.

The term “exemplary” is used herein to mean serving as
an example, instance, or illustration. Any aspect or
design described herein as “exemplary” is not neces-
sarily to be construed as preferred or advantageous over
other aspects or designs. Rather, use of the word
exemplary is intended to present concepts in a concrete
fashion.

As used in this application and the appended claims, the
term “or” is intended to mean inclusive “or” rather than
exclusive “or”. That is, unless specified otherwise, or is
clear from the context, “X employs A or B” is intended
to mean any of the natural inclusive permutations. That
is, if X employs A, X employs B, or X employs both A
and B, then “X employs A or B” is satisfied under any
of the foregoing instances.

The articles “a” and “an” as used in this application and
the appended claims should generally be construed to
mean “one or more” unless specified otherwise or is
clear from the context to be directed to a singular form.

Reference is now made in detail to certain embodiments.

The disclosed embodiments are not intended to be limiting
of the claims.

DESCRIPTIONS OF EXEMPLARY
EMBODIMENTS

FIG. 1 depicts an example installation 100 for reducing
downtime during upgrades of interrelated components in a
database system. As an option, the present example instal-
lation 100 may be implemented in the context of the
architecture and functionality of the embodiments described
herein. Also, the example installation 100 or any aspect
therein may be implemented in any desired environment.

The depiction of the installation 100 introduces several
concepts as shown an described herein. As shown, the
installation comprises an application system 101 (e.g., a
cluster environment, a portion of a database engine, etc.)
which in turn comprises computing nodes (e.g., node 102,
node 102,, node 102, node 102,, node 102,, etc.) any of
which computing nodes can communicate with any other of
the computing nodes. A software application (e.g., running
software application 104) executes on a computing node and
accesses stored data (e.g., business data 108, one or more
instances of a file system 110). A software application can
also access stored data in various application-specific
embodiments, (e.g., application metadata 112, application
code modules 116, and logical schema 118).

The application code modules 116 serves to store one or
more copies of the software application, while the applica-

10

15

20

25

30

35

40

45

50

55

60

65

6

tion metadata 112 serves to store data that is specific to the
application (e.g., disjoint from the business data 108). The
application metadata 112 can comprise application-specific
data in the form of seed data 114, which can be used by the
application to initialize data structures (e.g., screens, forms,
menus, etc.) used by a running software application.

A particular collection of interrelated components in a
database system (e.g., application metadata 112, application
code modules 116, logical schema 118, business data 108,
one or more instances of a file system 110, etc.) can be
amalgamated into an “edition” (e.g., an initial run edition
106), which edition can then be subjected to transformations
(e.g., data copies, data references, data conversions, etc.)
into one or more other editions (e.g., patch edition 120), as
shown.

In order to facilitate for reducing downtime during
upgrades of interrelated components in a database system,
the collection of interrelated components are handled using
the techniques disclosed herein. Strictly as an introductory
example, an instance of a running software application can
access an initial run edition, or an instance of a running
software application can access a patch edition. Various
techniques for managing the timing and type of access are
provided for by the editioning view 126 and by use of
synonyms 124. For example, a synonym can be modified to
refer to a logical schema of the initial run edition, or a
synonym can be modified to refer to a logical schema of a
patch edition.

As can be recognized by those skilled in the art, a first
instance of a running software application can access make
changes to an initial run edition, and such changes can be
detected and propagated to a patch edition using the cross-
edition triggers 122. Thus, the second instance of the run-
ning software application can access the changes that had
been propagated to the patch edition.

The various techniques for copying, referencing, trans-
forming and otherwise managing the location (e.g., physical
copy, virtual copy, etc.) of data as well as techniques for
managing the timing and type of access observed by the
running software application are discussed in detail infra.
“The Application”

A running installation of a suite of enterprise software
applications comprises a vast and complex system made up
of many individual parts that are broadly separated into a
taxonomy as follows:

A platform (e.g., storage hardware and software, servers,
network components, OS, database hardware and soft-
ware, middleware hardware and software, system man-
agement hardware and software, etc.), and

One or more software applications (e.g., application code
modules, application schema, code, application meta-
data, etc.)

Components within an installation can be further

described as comprising:

Application Schema—Application schema codifies a rela-
tional data model for accessing items stored in the
application system 101 (e.g., tables, relationships,
indexes, etc.). An instance of application schema
defines the structure of the data being managed—it is
not the data itself. The application schema is often
managed while observing a two layer approach com-
prising physical schema and logical schema:

The Physical Schema describes how information is
actually stored in database tables.

The Logical Schema is a stable view of the relevant
parts of the physical schema presented to the appli-
cation code modules. The logical schema is often

US 9,448,784 B2

7

defined in terms of the physical schema using syn-
onyms, views and access policies. In exemplary
embodiments, the logical schema defines what is
“seen” when an application code module connects to
the relational data.

Application Code Modules—These modules comprise
executable logic that controls how the application oper-
ates. Instances of application code modules run on the
database, middle-tier application servers, and in client
devices. Application code modules can be written in a
variety of programming and/or scripting languages.

Application Metadata—This is data that participates in
controlling how the application operates (e.g., initial
look-and-feel, user customizations, etc.). This data can
be stored in files on the files system, and/or in tables in
a database. Metadata that is loaded into database tables
is called “seed data”. In some cases, metadata can be
altered during application runtime. Users often edit
application metadata to tailor functionality to their
particular user-specific requirements.

Business Data—This often refers to customer-owned
transaction data or reference data that is stored in
accordance with the application schema. Uses of
patches as herein-described can modify how business
data is stored (e.g., corresponding to an instance of an
application schema), however the patching embodi-
ments herein do not explicitly create or explicitly delete
customer business data.

The techniques described herein provide for online patch-
ing of applications (and respective application data) as well
as for the online patching and online transformation of
business data (e.g., transformation to an updated application
schema).

Application Editions

A collection of schema, code and metadata definitions
comprise an application definition 140. Components of the
application definition may need to change over time, and the
techniques herein prescribe how each part of the application
definition are to be versioned and patched independently.
Therefore, an application definition in a particular installa-
tion is known by a compound “version 1D comprised of the
union of the versions of all of its constituent parts. An
installed collection of versioned part definitions is referred
to as an Application Edition. In exemplary cases, an appli-
cation definition is stored both on the file system and in the
database. Further it is typical to store multiple Application
Editions within one installation, and in such cases both the
file system and database are used to hold a run edition
version and one or more patch edition versions of the
application definition.

File System Editions

A file system edition is a set of the files that make up an
application definition. The files may be organized into a
hierarchical directory tree with a root directory known as the
“Application Top” or other convenient designation. In some
cases, the Application Top path for an installation is stored
in an operating system environment variable. It is possible
to store multiple Application Top directory trees in the same
file system.

In the context of the installation depicted and described in
FIG. 1, and following the purpose and definition of an
edition and an edition’s constituent components, a cycle can
be followed so as to upgrade editions in a database system
while maximizing the availability of the installation’s func-
tionality.

FIG. 2 depicts a cycle 200 to manage edition components
for reducing downtime during upgrades of interrelated com-

10

15

20

25

30

35

40

45

50

55

60

65

8

ponents in a database system. As an option, the present cycle
200 may be implemented in the context of the architecture
and functionality of the embodiments described herein.
Also, the cycle 200 or any aspect therein may be imple-
mented in any desired environment.
To apply an online patch to an active/online installation,
the installation is promoted through a series of sequential
phases known as an online patching cycle. The shown online
patching cycle 202 is given as:
PREPARE a patch edition (see online patch cycle prepare
step 206).

APPLY a patch or patches to a patch edition (see online
patch cycle apply step 208).

FINALIZE to get the system ready for cutover (see online
patch cycle finalize step 210).

CUTOVER to patch edition (see online patch cycle
cutover step 212).
Shutdown software applications and application ser-

vices.

Set patch edition as the new run edition.
Startup software applications and application services.

CLEANUP old objects or editions (see online patch cycle

cleanup step 214).

As described in the above cycle, creating and patching
relies on many specialized techniques to maintain a run
edition (e.g., initial run edition 106) and one or more patch
editions (e.g., patch edition 120) in the presence of continu-
ously changing customer data in database tables (e.g., in the
business data 108). The concept and implementation of
“Edition-Based Redefinition” creates patch edition copies of
application code modules and data in order to continuously
apply patch transformations to runtime data that changes
while the patch is executing.

The users can be all online users during the normal
operation (e.g., during the running period 226), then for the
brief period of the cutover (e.g., during the cutover period
228) the users are offline, to return online (e.g., in cleanup
period 230) shortly after conclusion of the period of the
cutover.

One embodiment supports full installation online patch-
ing. Some installations comprise many products (e.g., hun-
dreds of software application configurations, and many tens
of thousands of tables). In such a case it is convenient to
deploy every installation to contain all products (though
only some may be licensed for a particular installation) and
then to patch all products that are included in every instal-
lation. In this manner, all products can be periodically
updated to stay current with the recommended code levels.

Implementing the above cycle to manage edition compo-
nents for reducing downtime during upgrades relies in part
on a particular configuration of an edition. An approach to
forming such a particular configuration of an edition is
discussed below.

FIG. 3 depicts selected uses of an edition-based redefi-
nition scheme 300 used in reducing downtime during
upgrades of interrelated components in a database system.
As an option, the present edition-based redefinition scheme
300 may be implemented in the context of the architecture
and functionality of the embodiments described herein.
Also, the edition-based redefinition scheme 300 or any
aspect therein may be implemented in any desired environ-
ment.

The depiction in FIG. 3 comprises an exemplary appli-
cation of edition-based redefinition. This scheme supports
efficient storage of multiple application editions in the same
database engine.

US 9,448,784 B2

9

In the application system 101 of FIG. 1, all objects stored
in the database have a unique name that identifies the object.
In some cases, an object name use a two-part name space,
codified as {owner, object_name}. For objects that can be
editioned (see FIG. 3) an additional element is added to the
namespace, namely an identifier for the edition.

The “edition-legal” namespace is thus: {EDITION,
OWNER, OBJECT_NAME }. This extension of the
namespace allows the database to store multiple versions of
the same object from an {OWNER, OBJECT_NAME }
namespace.

EXAMPLES
[EDITION_1] APPS.PROFILE/* PROFILE version
12.2.0%
[EDITION_2] APPS.PROFILE/* PROFILE version
12.2.1%

In exemplary usage, each connected database session has
a current_edition_name context that identifies the edition
used to resolve references to editioned objects. In accor-
dance with the notion of edition-based redefinition software,
an application code module does not reference the edition
name of a referenced object explicitly. Instead, the edition
portion of an identifier is always determined by the session
context (e.g., in a prepare cycle, or in a finalize cycle, or in
a cutover cycle, etc.). For example, a running software
application 104 refers to non-editioned objects in the initial
run edition 106 only through editioned synonyms 124. The
edition of synonyms 124 in turn is specified by the session
context.

When a patch edition is created, it inherits the existing
definitions of the objects from the run edition. If editioned
objects are created or replaced in the patch edition, such
changes will not be visible in the run edition. Changes to
non-editioned objects will affect all forward editions, so
these objects are be covered with an editioned indirection
layer or otherwise handled to avoid impacting the running
software application. Indeed not all objects are editioned. In
some cases only certain types of objects are editioned (as
mentioned above). Specifically, some objects are not subject
to editioning (see the Editioning Constraint infra):

Referring to the selected uses of an edition-based redefi-
nition scheme as shown in FIG. 3, some objects are copied
from the run edition (e.g., initial run edition 106) to a patch
edition (e.g., patch edition 120). As shown, a to-be-patched
object A 302, is copied to editioned object A 302, (see copy
330,). Similarly, a to-be-patched schema C 306, is copied to
editioned schema C 306, (see copy 330,). However, Table B
304, is merely referenced (and not copied) using Table B
reference 304,; the Table B reference 304, points to Table B
304, of the run edition. Similarly, Table D 308, is merely
referenced (and not copied) using Table D reference 308,;
the Table D reference 308, points to Table D 308, of the run
edition.

Also shown in FIG. 3 is a PUBLIC object that comprises
one or more PUBLIC synonyms that point to editioned
objects. PUBLIC synonyms that point to editioned objects
(e.g., instances of PUBLIC synonym 312) are purposely
dropped, and any reference to such a PUBLIC synonym is
replaced (see replace operation 343) with equivalent private
synonyms 314 in the referencing schemas (also see FIG. 4).

Other non-editioned types shown in FIG. 3 include user-
defined types (e.g., user-defined type 320, and copied user-
defined type 320,), a user object E 310, and a queue object

10

15

20

25

30

40

45

50

55

60

65

10

Q 322, which are handled by a conversion process (see
convert 342). Such a conversion process is further described
in the discussion of FIG. 5.

This scheme introduces additional concepts, namely “Edi-
tioning Views” and “Cross-edition Triggers”, which are now
briefly discussed.

Cross-Edition Triggers

The edition-based redefinition scheme introduces a func-
tion called a cross-edition trigger. A cross-edition trigger is
a database table trigger that is triggered from one edition and
then executes in another edition. For example, an update
statement from the running software application (e.g., a run
edition) can fire a cross-edition trigger that executes trans-
formation logic in the Patch Edition. Cross-edition triggers
are used to transform data forwards and backwards across
corresponding storage columns in different database edi-
tions. Exemplary uses of cross-edition triggers are further
discussed in FIG. 6.

Editioning Views

The edition-based redefinition scheme introduces a new
restricted form of database view called an editioning view.
An editioning view (EV) can only select individual columns
of a table such as “COLUMN1, COLUMN2, COLUMN3”.
An editioning view cannot select expressions involving
columns such as “UPPER(COLUMN1)”, or “(COLUMN2+
COLUMN3)/2”. The function of an editioning view serves
to expose a subset of table columns from a single table, and
as such, an editioning view is not allowed to contain a
“where” clause or any type of expression. The EV is used to
map logical column names (used by the application code
modules) to the actual table columns where the data is
stored. This allows the application code modules to be
written using stable logical column names, even though the
underlying table columns may be different in any two
database editions. Further, the EV as hereinabove defined
addresses performance aspects due to its restricted form.
Embodiments of editioning views are further described in
the discussion of FIG. 7.

FIG. 4 presents a flow chart of selected edition readiness
operations 400 used in reducing downtime during upgrades
of interrelated components in a database system. As an
option, the selected edition readiness operations 400 may be
implemented in the context of the architecture and function-
ality of the embodiments described herein. Also, the selected
edition readiness operations 400 or any aspect therein may
be implemented in any desired environment.

The Editioning Constraint

As used herein, editioning is enabled per database user.
All editionable objects in a particular schema are either
editioned or not editioned. Since not all database objects are
editioned, and since the definition of one object can depend
on another object, an important constraint known as the
editioning constraint is to be satisfied before editioning can
be enabled:

NE!->E: Non-editioned objects may not depend on

editioned objects (Expression 1)

Thus, techniques are herein provided to resolve possible
“NE!->E” violations that would be produced by enabling
editions on schemas. Many of such violations fall into the
following exemplary categories:
PUBLIC Synonyms that refer to editioned objects.
Tables and Queues that depend on editioned User Defined
Types.

Materialized Views that depend on editioned objects.
Materialized View definitions often depend on edi-
tioned objects such as views and synonyms. Yet, mate-

US 9,448,784 B2

11

rialized views are a non-editioned object type and are
to be recast into an alternate implementation.

Custom and Third-party schemas that depend on edi-
tioned objects.

Indexes and indexing procedures that depend on editioned
objects.

As listed above, the PUBLIC objects comprise one of
several internal database schemas that cannot be editioned;
PUBLIC objects are not editioned. PUBLIC synonyms that
point to editioned objects must be dropped, and any refer-
ence to these PUBLIC synonyms 312 must be replaced (see
replace operation 343) with equivalent private synonyms
314 in the referencing schemas. This is done as follows:

Drop PUBLIC synonyms that point at non-existent
objects (see operation 410)

Query PUBLIC synonyms that point at “to-be-editioned”
objects (see operation 420)

For each PUBLIC synonym in operation 420, query the
users that have code dependencies on that PUBLIC
synonym (see operation 430)

For each affected user in operation 430, create the equiva-
lent private synonym (see operation 440)

After all private replacement synonyms have been cre-
ated, drop all PUBLIC synonyms from operation 420
(see operation 450).

As earlier mentioned, a running software application 104,
refers to non-editioned objects in the initial run edition 106
only through the synonyms 124. The synonyms 124 in turn
use the session context to name the edition. Further, when
application code references an editioned identifier, the edi-
tion portion of the identifier (including use in a synonym
124) is determined by the session context (e.g., referring to
objects through an edition name such as EDITION_1, EDI-
TION_2, etc.). For example, a running software application
104, refers to non-editioned objects in the initial run edition
106 only through the synonyms 124. The synonyms 124 in
turn use the session context to name the edition. Moreover,
a selected set of synonyms 124 are selected by the edition
property of the session context.

FIG. 5 depicts a flow 500 to manage editioned user-
defined type components for reducing downtime during
upgrades of interrelated components in a database system.
As an option, the present flow 500 may be implemented in
the context of the architecture and functionality of the
embodiments described herein. Also, the flow 500 or any
aspect therein may be implemented in any desired environ-
ment.

Handling Tables and Queues that Depend on Editioned user
Defined Types

Some installations include table/queue columns that are
defined using user defined types (UDTs). However, since the
editioning constraint prevents a table column from depend-
ing on an editioned data type, these table/queue columns are
to be converted and/or otherwise modified (e.g., to depend
on an equivalent non-editioned type).

One embodiment of such a conversion proceeds through
the flow below:

Copy the UDT types in order to create an equivalent

non-editioned type from the editioned type (see opera-
tion 510).

Stop any affected queues (see operation 520).

Update the column type to use the non-editioned type (see
operation 530).

Drop the old editioned type from APPS storage 318 and
create an APPS synonym 323 to the non-editioned type
(see operation 540).

30

35

40

45

50

55

12

Recreate internal derived objects from the affected queues
(see operation 550).

Re-start any affected queues (see operation 560).

In another embodiment, UDTs are marked as non-edi-
tioned, and applications observe the rules for handling
non-editioned objects.

FIG. 6 is a schematic 600 showing the effects of cross-
edition triggers used for reducing downtime during upgrades
of interrelated components in a database system. As an
option, the present schematic of cross-edition triggers may
be implemented in the context of the architecture and
functionality of the embodiments described herein. Also, the
cross-edition triggers or any aspect therein may be imple-
mented in any desired environment.

In exemplary usage, if a table, a structure or other data
(e.g., table 612) is to be updated in a way that is incompat-
ible with the running software application, then the change
is to be implemented using new table columns and a
“Forward Cross-edition Trigger” (FCET) is defined (see
cross-edition triggers 122). The Forward Cross-edition Trig-
ger is a type of table trigger created for use in online data
upgrades. It has the property of affecting the Patch Edition
after being triggered from the Run Edition and executing in
the Patch Edition. Using new columns and Forward Cross-
edition Triggers, developers can upgrade data in the Patch
Edition while the application continues to operate in the Run
Edition. The technique works as follows:

Create new base columns or revised columns to hold
patched data. The new table columns are delivered
through a schema patching tool. The Editioning View
of the run edition prevents the new columns from being
“seen” by the running software application.

The Table Manager PATCH procedure will regenerate the
Editioning View in the

Patch Edition so that it picks up the new columns. The
new columns are now visible to the patch edition of the
application, but empty of data.

Install a Forward Cross-edition Trigger that will populate
the new columns. Application developers code a For-
ward Cross-edition Trigger instead of the update state-
ment that would be used in a classic downtime patch.
The FCET takes input from the “old” columns (and any
other data source), computes the new values, and stores
results in the new columns. The FCET is initially
created “disabled” so that it can be installed and
validated without affecting the running software appli-
cation.

Apply the FCET to the table. The trigger is enabled and
then each row of the table is fake-updated, causing the
trigger to fire and populate the new columns. The FCET
will also fire if the running software application inserts
or updates data in the table. This keeps the new
columns in sync with ongoing changes from the run-
ning software application.

FIG. 7 is a schematic showing uses of a database edition-
ing view 700 used in reducing downtime during upgrades of
interrelated components in a database system. As an option,
the present database editioning view 700 may be imple-
mented in the context of the architecture and functionality of
the embodiments described herein. Also, the database edi-
tioning view 700 or any aspect therein may be implemented
in any desired environment.

Editioning View Layer

The Editioning View layer provides a stable “cover”
(logical view) of the physical schema. The editioning
enablement process (see FIG. 8) installs an editioning view
over each developer-managed table (e.g., a developer-man-

US 9,448,784 B2

13

aged table is a table that is created and maintained during
patching). In contrast, an application-managed table is cre-
ated and maintained by application logic during application
runtime. In exemplary embodiments, application-managed
tables will not receive an editioning view cover.

As shown, a run edition view 714 is a view that refers to
SAMPLE_TABLE 712 and accesses only certain table col-
umns (e.g., see the stippled column names of SAMPLE_T-
ABLE 712). Also, a patch edition view 716 is a view that
refers to SAMPLE_TABLE 712 and accesses only certain
table columns (e.g., see the white column names of SAM-
PLE_TABLE 712).

FIG. 8 is a flow chart of an editioning enablement process
as used in reducing downtime during upgrades of interre-
lated components in a database system.

As shown, an editioning enablement process 800 per-
forms all automatic fixes for editioning constraint violations,
and then enables editioning. The online patching enablement
as discussed here is implemented as a one-time upgrade
operation that serves to enable editioning for a particular
application such that any patches can be applied using the
online patching techniques of the present disclosure.

Validate free space requirements and grant edition man-

agement permissions (see operation 810).
Install patch edition database service (see operation 820).
Analyze system for editioning constraint violations (see
operation 830).
Execute automatic fixes for editioning constraint viola-
tions (see operation 840).
Enable editioning for users (see operation 850).
Install editioning views for developer-managed tables
(see operation 860).
Upgrade seed data tables to editioned data storage in the
patch edition (see operation 870).
Some of above online patching enablement steps are further
described in the following paragraphs.
Validate Free Space Requirements

The performance of an online patching cycle will cause
the system to create a new copy of any code or seed data that
is modified by the patch. Obsolete copies of editioned
objects will eventually be removed or deleted (e.g., in a
clean-up operation), however in order to handle the maxi-
mum free space demands involved in online patching,
enough free space is reserved to allow for full duplication of
all code and seed data.

Install Database Patching Service

A database patching service allows connections to the
database to be grouped for purposes of controlling workload
and priority. Since patching operations can run in parallel
with the running software application, the database patching
service creates a database service to be used by all patching
tools. This service will allow workload from patching opera-
tions to be controlled so as not to unduly impact the running
software application.

Upgrade Seed Data Tables to Editioned Data Storage

The editioned data storage architecture allows a seed data
table to hold multiple editions of application seed data in the
same table. The seed data table upgrade serves to upgrade
each seed data table to conform to the rules for forming and
upgrading a patch edition.

Orchestration of the Online Patching Cycle

The orchestration of the online patching cycle includes
actually applying the patches, and also involves system level
operations to prepare, cutover, and cleanup application edi-
tions as follows:

5

10

15

20

25

30

35

40

45

50

55

60

65

14
PREPARE:
Validate that the system is ready to start a new patching
cycle.
Run CLEANUP phase for previous patch session if
needed.
Check for available space and availability of needed
services.

Create new patch session.
Submit an “online patch in progress™ concurrent pro-
gram; wait for it to start.
Prepare database patch edition.
Prepare file system patch edition (synchronize with run
edition).
APPLY
Merge multiple patches into a single merge patch if
needed.
Apply patch to patch edition.
FINALIZE
Pre-compute cutover actions.
Recompile invalid objects.
Quiesce concurrent manager.
Validate system is ready for cutover.
Generate status report (e.g., what has changed in patch
edition).
Report any processing errors or invalid objects.
CUTOVER:
Run FINALIZE phase for this patch session, if needed.
Shutdown application services.
Cutover to patch edition of database.
Kill old database sessions (application use of the run
edition is no longer allowed).
Execute saved cutover actions.
Promote patch edition to become new run edition.
Retire old database edition (blocks new connections
to it).
Cutover to patch edition of file system.
Configure patch file system as the new run file
system.
For multi-node, remote execute file system cutover
on each slave node.
Startup application services on new run edition.
Execute a startup application services script on mas-
ter node.
For multi-node, remote execute startup application
services script on each slave node.
CLEANUP:
Cleanup old database edition.
Drop cross-edition triggers.
Drop covered objects.
Drop unused columns and old editions.
Additional Embodiments of the Disclosure
FIG. 9A depicts a block diagram of a system for reducing
downtime during upgrades of interrelated components in a
database system. As an option, the present system 9A00 may
be implemented in the context of the architecture and
functionality of the embodiments described herein. Of
course, however, the system 9A00 or any operation therein
may be carried out in any desired environment. As shown,
system 9A00 comprises at least one processor and at least
one memory, the memory serving to store program instruc-
tions corresponding to the operations of the system. As
shown, an operation can be implemented in whole or in part
using program instructions accessible by a module. The
modules are connected to a communication path 9A05, and
any operation can communicate with other operations over
communication path 9A05. The modules of the system can,
individually or in combination, perform method operations

US 9,448,784 B2

15

within system 9A00. Any operations performed within sys-
tem 9A00 may be performed in any order unless as may be
specified in the claims. The embodiment of FIG. 9A imple-
ments a portion of a computer system, shown as system
9A00, comprising a computer processor to execute a set of
program code instructions (see module 9A10) and modules
for accessing memory to hold program code instructions to
perform: preparing a patch edition (see module 9A20);
applying patch to patch edition (see module 9A30); final-
izing the environment to get the system ready for cutover
(see module 9A40); performing a cutover operation com-
prising patching an edition (see module 9A50); performing
a shutdown of application services (see module 9A60);
setting the patch edition as the new run edition (see module
9A70); performing a startup of application services (see
module 9A80); and performing cleanup operations of old
objects or old editions (see module 9A90).

FIG. 9B depicts a block diagram of a system for reducing
downtime during upgrades of interrelated components in a
database system. As an option, the present system 9B00 may
be implemented in the context of the architecture and
functionality of the embodiments described herein. Of
course, however, the system 9B00 or any operation therein
may be carried out in any desired environment. As shown,
system 9B00 comprises at least one processor and at least
one memory, the memory serving to store program instruc-
tions corresponding to the operations of the system. As
shown, an operation can be implemented in whole or in part
using program instructions accessible by a module. The
modules are connected to a communication path 9B05, and
any operation can communicate with other operations over
communication path 9B05. The modules of the system can,
individually or in combination, perform method operations
within system 9B00. Any operations performed within sys-
tem 9B00 may be performed in any order unless as may be
specified in the claims. The embodiment of FIG. 9B imple-
ments a portion of a computer system, shown as system
9B00, comprising a computer processor to execute a set of
program code instructions (see module 9B10) and modules
for accessing memory to hold program code instructions to
perform: loading, while at least one running software appli-
cation is executing on the system, a plurality of database
objects from an initial run edition into a patch edition, the
database objects comprising at least one software applica-
tion code module, at least one relational database table, and
at least one file system (see module 9B20); applying at least
one patch to the at least one software application code
module corresponding to the at least one running software
application to create a patched software application (see
module 9B30); applying at least one patch to the at least one
relational database table (see module 9B40); applying at
least one patch to the at least one file system (see module
9B50); stopping the at least one running software applica-
tion (see module 9B60); and starting the patched software
application (see module 9B70).

FIG. 9C depicts a block diagram of a system for reducing
downtime during upgrades of interrelated components in a
database system. As an option, the present system 9C00 may
be implemented in the context of the architecture and
functionality of the embodiments described herein. Of
course, however, the system 9C00 or any operation therein
may be carried out in any desired environment. As shown,
system 9C00 comprises at least one processor and at least
one memory, the memory serving to store program instruc-
tions corresponding to the operations of the system. As
shown, an operation can be implemented in whole or in part
using program instructions accessible by a module. The

20

35

40

45

55

16

modules are connected to a communication path 9C05, and
any operation can communicate with other operations over
communication path 9C05. The modules of the system can,
individually or in combination, perform method operations
within system 9C00. Any operations performed within sys-
tem 9C00 may be performed in any order unless as may be
specified in the claims. The embodiment of FIG. 9C imple-
ments a portion of a computer system, shown as system
9C00, comprising a computer processor to execute a set of
program code instructions (see module 9C10) and modules
for accessing memory to hold program code instructions to
perform: loading, while at least one running software appli-
cation is executing within the computing environment, a
plurality of database objects from an initial run edition into
a patch edition, the database objects comprising at least one
software application code module, at least one relational
database table, and at least one file system (see module
9C20); applying at least one first patch to the at least one
software application code module corresponding to the at
least one running software application to create a patched
software application (see module 9C30); applying at least
one second patch to the at least one relational database table
to create a patched relational database table (see module
9C40); stopping the at least one running software applica-
tion (see module 9C50); and starting the patched software
application (see module 9C60).

System Architecture Overview

FIG. 10 depicts a block diagram of an instance of a
computing environment comprising a computer system
1000 suitable for implementing an embodiment of the
present disclosure. Computer system 1000 includes a bus
1006 or other communication mechanism for communicat-
ing information, which interconnects subsystems and
devices, such as a processor 1007, a system memory 1008
(e.g., RAM), a static storage device (e.g., ROM 1009), a disk
drive 1010 (e.g., magnetic or optical), a data interface 1033,
a communication interface 1014 (e.g., modem or Ethernet
card), a display 1011 (e.g., CRT or LCD), input devices 1012
(e.g., keyboard, cursor control), and an external data reposi-
tory 1031.

According to one embodiment of the disclosure, computer
system 1000 performs specific operations by processor 1007
executing one or more sequences of one or more instructions
contained in system memory 1008. Such instructions may be
read into system memory 1008 from another computer
readable/usable medium, such as a static storage device or a
disk drive 1010. In alternative embodiments, hard-wired
circuitry may be used in place of or in combination with
software instructions to implement the disclosure. Thus,
embodiments of the disclosure are not limited to any specific
combination of hardware circuitry and/or software. In one
embodiment, the term “logic” shall mean any combination
of software or hardware that is used to implement all or part
of the disclosure.

The term “computer readable medium” or “computer
usable medium” as used herein refers to any medium that
participates in providing instructions to processor 1007 for
execution. Such a medium may take many forms, including
but not limited to, non-volatile media and volatile media.
Non-volatile media includes, for example, optical or mag-
netic disks, such as disk drive 1010. Volatile media includes
dynamic memory, such as system memory 1008.

Common forms of computer readable media includes, for
example, floppy disk, flexible disk, hard disk, magnetic tape,
or any other magnetic medium; CD-ROM or any other
optical medium; punch cards, paper tape, or any other
physical medium with patterns of holes; RAM, PROM,

US 9,448,784 B2

17
EPROM, FLASH-EPROM, or any other memory chip or
cartridge, or any other non-transitory medium from which a
computer can read data.

In an embodiment of the disclosure, execution of the
sequences of instructions to practice the disclosure is per-
formed by a single instance of the computer system 1000.
According to certain embodiments of the disclosure, two or
more computer systems 1000 coupled by a communications
link 1015 (e.g., LAN, PTSN, or wireless network) may
perform the sequence of instructions required to practice the
disclosure in coordination with one another.

Computer system 1000 may transmit and receive mes-
sages, data, and instructions, including programs (e.g., appli-
cation code modules), through communications link 1015
and communication interface 1014. Received program code
may be executed by processor 1007 as it is received, and/or
stored in disk drive 1010 or other non-volatile storage for
later execution. Computer system 1000 may communicate
through a data interface 1033 to a database 1032 on an
external data repository 1031. A module as used herein can
be implemented using any mix of any portions of the system
memory 1008, and any extent of hard-wired circuitry includ-
ing hard-wired circuitry embodied as a processor 1007.

In the foregoing specification, the disclosure has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the disclosure. For example, the
above-described process flows are described with reference
to a particular ordering of process actions. However, the
ordering of many of the described process actions may be
changed without affecting the scope or operation of the
disclosure. The specification and drawings are, accordingly,
to be regarded in an illustrative sense rather than restrictive
sense.

What is claimed is:

1. A computer implemented method for reducing down-
time during upgrades of interrelated components in a com-
puting environment, the method comprising:

identifying an initial run edition associated with at least

one running software application;

identifying an interrelation between the at least one run-

ning software application and at least one relational
database table using at least one or more synonyms
indicative of the interrelation;
identifying a plurality of components from the initial run
edition based in part or in whole upon the interrelation,
the plurality of components comprising at least one
software application code module for the at least one
running software applications, at least a portion of the
at least one relational database table, and at least one
file system;
loading the plurality of components into a patch edition;
applying at least one first patch to the at least one software
application code module in the patch edition corre-
sponding to the at least one running software applica-
tion to create a patched software application;

applying at least one second patch to the at least one
relational database table in the patch edition to create a
patched relational database table;

after the at least one first patch and the at least one second

patch have been applied, shutting down the initial run
edition associated with the at least one running soft-
ware application;

starting the patch edition corresponding to the at least one

running software application after shutting down the
initial run edition such that one or more users accessing

10

15

20

25

30

35

40

50

55

60

18

the initial run edition associated with the at least one
running software application are placed offline during a
cutover period and return online after conclusion of the
cutover period;

identifying one or more instances of a running file system

for the at least one running software application;
identifying a running file system format for the one or
more instances of the running file system;
identifying running file system content for the one or
more instances of the running file system, the running
file system content including an application definition
and application metadata that control how the at least
one running software application operates;

associating the one or more instances of the running file
system with an initial run file system edition;

amalgamating the initial run file system edition into the
initial run edition that is associated with the at least one
running software application;

creating a file system patch edition for the one or more

instances of the running file system;

synchronizing the file system patch edition with the initial

run file system edition; and

creating a patch or upgrade session for the one or more

instances of the running file system.
2. The method of claim 1, further comprising modifying
a synonym to refer to a logical schema of the patch edition.
3. The method of claim 1, further comprising applying at
least one file system patch to the at least one file system to
create a patch file system.
4. The method of claim 3, further comprising configuring
the patch file system as a new run file system.
5. The method of claim 1, further comprising deleting the
at least one software application code module that was used
to create the patched software application.
6. The method of claim 1, further comprising at least one
of, calculating free space requirements, granting edition
management permissions, executing one or more finalizing
steps, the finalizing steps comprising at least one of, com-
puting cutover actions, recompiling selected objects, or
reporting processing errors, or enabling editioning for users.
7. The method of claim 1, further comprising:
validating that the one or more instances of the running
file system are ready to start the patch or upgrade
session at least by cleaning up one or more previous
patch sessions and by checking for availability of one
or more services needed for the patch or upgrade cycle;

determining a patch file system format and patch file
system content for the file system patch edition;

preparing the file system patch edition for the one or more
instances of the running file system at least by modi-
fying the running file system into a patch file system,
modifying the running file system comprising at least
applying the patch system format and the patch file
system content to the file system patch edition;

determining one or more cutover actions for the cutover
period;

re-compiling one or more invalid objects;

quiescing a concurrent manager; and

configuring the patch file system as a new running file

system.

8. The method of claim 1, further comprising:

synchronizing at least a portion of the initial run edition

and the patch edition at least by populating one or more
changes between the initial run edition and the patch
edition.

9. The computer implemented method of claim 1, further
comprising:

US 9,448,784 B2

19

identifying one or more non-editioned objects in the

initial run edition;
identifying at least one session context for the one or more
non-editioned objects in the initial run edition;

referencing the one or more non-editioned objects with
only one or more corresponding editioned synonyms
based in part or in whole upon the at least one session
context;

identifying one or more editioned objects in the initial run

edition;

identifying at least one change made to the one or more

editioned objects in the initial run edition;

populating the at least one change to the patch edition;

identifying metadata that are interrelated to the at least

one running software application from the initial run
edition;

copying the metadata from the initial run edition to the

patch edition;

loading the plurality of components into the patch edition

at least by copying the at least one software application
code module to the patch edition and by referencing the
at least one relational database table in the patch
edition;

preparing the file system patch edition for the at least one

in the patch edition;

discarding one or more first synonyms for one or more

first objects;

replacing reference to the one or more first synonyms with

one or more private synonyms; and

performing a cutover from the initial run edition to the

patch edition at least by modifying a first synonym
referring to a logical schema of the initial run edition
into a first modified synonym and by referencing the
logical schema of the patch edition.

10. A computer system for reducing downtime during
upgrades of interrelated components in a computing envi-
ronment, comprising:

a computer processor to execute a set of program code

instructions; and

a memory to hold the program code instructions, in which

the program code instructions comprises program code
which, when executed by the computer processor,
causes the computer processor at least to:

identify an initial run edition associated with at least one

running software application;

identify an interrelation between the at least one running

software application and at least one relational database
table using at least one or more synonyms indicative of
the interrelation;

identify a plurality of components from the initial run

edition based in part or in whole upon the interrelation,
the plurality of components comprising at least one
software application code module for the at least one
running software applications, at least a portion of the
at least one relational database table, and at least one
file system;

load the plurality of components into a patch edition;

apply at least one first patch to the at least one software

application code module in the patch edition corre-
sponding to the at least one running software applica-
tion to create a patched software application;

apply at least one second patch to the at least one

relational database table in the patch edition to create a
patched relational database table;

10

15

20

25

30

35

40

45

50

55

60

65

20

after the at least one first patch and the at least one second
patch have been applied, shut down the initial run
edition associated with the at least one running soft-
ware application;

start the patch edition corresponding to the at least one

running software application after shutting down the
initial run edition such that one or more users accessing
the initial run edition associated with the at least one
running software application are placed offline during a
cutover period and return online after conclusion of the
cutover period;

identify one or more instances of a running file system for

the at least one running software application;

identify a running file system format for the one or more

instances of the running file system;
identify running file system content for the one or more
instances of the running file system, the running file
system content including an application definition and
application metadata that control how the at least one
running software application operates;
associate the one or more instances of the running file
system with an initial run file system edition;

amalgamate the initial run file system edition into the
initial run edition that is associated with the at least one
running software application;

create a file system patch edition for the one or more

instances of the running file system;

synchronize the file system patch edition with the initial

run file system edition; and

create a patch or upgrade session for the one or more

instances of the running file system.

11. The computer system of claim 10, further comprising
program code which, when executed by the computer pro-
cessor, further causes the computer processor to modify a
synonym to refer to a logical schema of the patch edition.

12. The computer system of claim 10, further comprising
program code which, when executed by the computer pro-
cessor, further causes the computer processor to apply at
least one file system patch to the at least one file system to
create a patch file system.

13. The computer system of claim 12, further comprising
program code which, when executed by the computer pro-
cessor, further causes the computer processor to configure
the patch file system as a new run file system.

14. The computer system of claim 10, further comprising
program code which, when executed by the computer pro-
cessor, further causes the computer processor to delete the at
least one software application code module that was used to
create the patched software application.

15. The computer system of claim 10, further comprising
program code which, when executed by the computer pro-
cessor, further causes the computer processor to access the
patched relational database table using the patched software
application.

16. A computer program product embodied in a non-
transitory computer readable medium, the computer read-
able medium having stored thereon a sequence of instruc-
tions which, when executed by a processor causes the
processor to execute a set of tasks to implement reducing
downtime during upgrades of interrelated components in a
computing environment, the set of tasks comprising:

identifying an initial run edition associated with at least

one running software application;

identifying an interrelation between the at least one run-

ning software application and at least one relational
database table using at least one or more synonyms
indicative of the interrelation;

US 9,448,784 B2

21

identifying a plurality of components from the initial run
edition based in part or in whole upon the interrelation,
the plurality of components comprising at least one
software application code module for the at least one
running software applications, at least a portion of the
at least one relational database table, and at least one
file system;

loading the plurality of components into a patch edition;

applying at least one first patch to the at least one software
application code module in the patch edition corre-
sponding to the at least one running software applica-
tion to create a patched software application;

applying at least one second patch to the at least one
relational database table in the patch edition to create a
patched relational database table;

after the at least one first patch and the at least one second
patch have been applied, shutting down the initial run
edition associated with the at least one running soft-
ware application;

starting the patch edition corresponding to the at least one
running software application after shutting down the
initial run edition such that one or more users accessing
the initial run edition associated with the at least one
running software application are placed offline during a
cutover period and return online after conclusion of the
cutover period;

identifying one or more instances of a running file system
for the at least one running software application;

identifying a running file system format for the one or
more instances of the running file system;

10

15

20

25

22

identifying running file system content for the one or
more instances of the running file system, the running
file system content including an application definition
and application metadata that control how the at least
one running software application operates;

associating the one or more instances of the running file
system with an initial run file system edition;

amalgamating the initial run file system edition into the
initial run edition that is associated with the at least one
running software application;

creating a file system patch edition for the one or more

instances of the running file system;

synchronizing the file system patch edition with the initial

run file system edition; and

creating a patch or upgrade session for the one or more

instances of the running file system.

17. The computer program product of claim 16, further
comprising instructions for modifying a synonym to refer to
a logical schema of the patch edition.

18. The computer program product of claim 16, further
comprising instructions for applying at least one file system
patch to the at least one file system to create a patch file
system.

19. The computer program product of claim 18, further
comprising instructions for configuring the patch file system
as a new run file system.

20. The computer program product of claim 16, further
comprising instructions for deleting the at least one software
application code module that was used to create the patched
software application.

